1,4-BENZODIAZEPINES AND THEIR DERIVATIVES

VII.* ACTIVITY OF THE METHYLENE GROUP OF 1,3-DIHYDRO-2H-

1,4-BENZODIAZEPIN-2-ONES AND -2-THIONES

Z. I. Zhilina, A. V. Bogatskii,

UDC 547.8921789.787

E. D. Sych, T. K. Chumachenko, and S. A. Andronati

A series of compounds of the merocyanine dye type was obtained by the reaction of 1-acetyl-1,3-dihydro-2H-1,4-benzodiazepin-2-ones and 1,3-dihydro-2H-1,4-benzodiazepine-2-thiones with 2-methylmercapto-3-ethylbenzothiazolium tosylate, 2-methylmercapto-3,4,5-trimethyl-thiazolium bromide, 2-methylmercapto-3-methyl-5-phenyloxazolium methosulfate, and 1,3,3-trimethyl-2-formylmethyleneindoline. The hydrogen atoms of the methylene group of the 1-unsubstituted and 1-alkyl-substituted 1,3-dihydro-2H-1,4-benzodiazepin-2-ones are of low mobility, and the indicated compounds do not undergo condensation reactions with electrophilic agents.

In the chemistry of 1,4-benzodiazepines the problem of the activity of the methylene group of 1,3-di-hydro-2H-1,4-benzodiazepin-2-ones (I) and -2-thiones (II) has not been studied at all. There are papers [1,2] in which the condensation of tetrahydro-1,4-benzodiazepin-2,5-dione with benzaldehyde, which proceeds with the participation of the methylene group of this 1,4-benzodiazepine derivative, is described.

We felt that it would be interesting to investigate the activity of the methylene group in substituted 1,3-dihydro-2H-1,4-benzodiazepin-2-ones and -2-thiones (A).

$$\begin{array}{c|c}
R & & & \\
N - C & X \\
C = N & \\
1, 11 & C_0 H_0
\end{array}$$

R=H, CH3, CH3CO; R'=CH3, Cl, Br; I X=O; II X=S

Proceeding from the structure of compounds of the A type, it could be assumed that they are capable of reacting with electrophilic agents like other substances that contain active methylene groups. We have previously shown that I (X = O, R = H) undergoes tautomeric transformation as the pH is changed. In neutral media, these compounds have a lactam structure, but have the lactim structure in alkali [3,4]. The shift of the electron density in the I system, which is responsible for this form of tautomerism, suppresses the formation of the enol form via the second form of tautomerism possible here, viz., keto-enol tautomerism. The methylene group in such compounds is of low activity.

It seemed possible that the introduction of an electron-acceptor substitutent into the 1-position could increase the lability of the hydrogen atoms of the methylene group. Proceeding from this assumption, we synthesized the corresponding acetyl derivatives of I (R = $\rm CH_3CO$) [4] and condensed them with the intermediates commonly used in the synthesis of cyanine dyes – 2-methylmercapto-3-ethylbenzothiazolium tosylate (III), 2-methylmercapto-3,4,5-trimethylthiazolium bromide (IV), 2-methylmercapto-3-methyl-5-

^{*}See [6] for communication VI.

Odessa State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 992-994, July, 1971. Original article submitted November 30, 1970.

^{© 1974} Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Comp.	R'	R	х	Y	mp	h_{max}	Empirical formula	Found %		Calc.		Yield, %
							101111411	N	s	N	s	Yie
VII VIII IX	CI Br CH ₃	CH₃CO CH₃CO CH₃CO	0 0 0	$\sum_{\substack{c_2 H_5}}^{s}$	93—94 94—95 89—90	440	C ₂₆ H ₂₀ CIN ₃ O ₂ S C ₂₆ H ₂₀ BrN ₃ O ₂ S C ₂₇ H ₂₃ N ₃ O ₂ S	8,9 8,2 9,2	6,1	8,9 8,3 9,3	6,8 6,2 7,0	45
X XI XII	Cl Br CH ₃	CH₃CO CH₃CO CH₃CO	000	S CH ₃ CH ₃	73—75 75—77 70—72	475	C ₂₃ H ₂₀ ClN ₃ O ₂ S C ₂₃ H ₂₀ BrN ₃ O ₂ S C ₂₄ H ₂₃ N ₃ O ₂ S	9,8 8,8 10,0	6,7			25 30 25
XIII XIV XV	CI Br CH ₃	CH₃CO CH₃CO CH₃CO	0000	ECH-CH CH3	78—80 78—79 75—77	522	C ₂₉ H ₂₆ CIN ₃ O ₂ C ₂₉ H ₂₆ BrN ₃ O ₂ C ₃₀ H ₂₉ N ₃ O ₂	8,7 8,0 9,0		8,7 8,0 9,1		62 66 63
XVI XVII XVIII	Cl Br CH ₃	CH₃CO CH₃CO CH₃CO	8	CH ₃	52—54 52—55 50—52		C ₂₇ H ₂₀ ClN ₃ O ₃ C ₂₇ H ₂₀ BrN ₃ O ₃ C ₂₈ H ₂₃ N ₃ O ₃	9,0 8,2 9,4		8,9 8,2 9,3		43 39 33
XIX	Cl Br	H H	\{ \frac{s}{s} \}	S-C ₂ H ₅	78—80 84—86		C ₂₄ H ₁₈ ClN ₃ S ₂ C ₂₄ H ₁₈ BrN ₃ S ₂		14,6 12,8		14,3 13,0	

phenyloxazolium methosulfate (V), and 1,3,3-trimethyl-2-formylmethyleneindoline (VI),* as a result of which we obtained a series of compounds of the merocyanine dye type B.

Like the 1-unsubstituted 1,3-dihydro-2H-1,4-benzodiazepin-2-ones (I, R=H), the 1-methyl derivatives of I ($R=CH_3$) do not condense with III-VI, which might have been expected considering the electron-donor character of the methyl radical and what was stated above relative to the reactivity of the methylene group in such compounds.

A similar condensation of III-VI with thiones II gave the corresponding dyes B (X = S). Here it is interesting to note that the reaction also proceeds with 1-unsubstituted thiones II (R = H). This sort of activation of the methylene group apparently occurs due to the great polarizability of the C = S bond (as compared with the C = O group). It is possible that the thione—thiol tautomerism predominates over the thiolactam—thiolactim tautomerism in the case of thiolactams II. However, this assumption requires experimental confirmation.

Compounds B are brightly colored, crystalline substances (see Table 1). The spectra of VII-IX, XIX, and XX contain a band at 430-460 nm characteristic for merocyanine dyes of this type [5]. This band undergoes a considerable bathochromic shift in the spectra of XIII-XV, which is probably explained by the greater conjugation in such systems than in systems of the VII-IX type.

^{*}Compounds III-VI were synthesized in the Institute of Organic Chemistry of the Academy of Sciences of the Ukrainian SSR (Kiev).

EXPERIMENTAL

7-Chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-3-[2-(1-ethylbenzothiazolylidene)]-1,4-benzodiazepin-2-one (VII). Several drops of triethylamine were added to a hot solution of 0.62 g (0.002 mole) of 7-chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one and 0.76 g (0.002 mole) of 2-methylmercapto-3-ethylbenzothiazolium tosylate in 10 ml of absolute ethanol. The mixture was refluxed for 1 h, during which the solution took on a yellow-orange color. The solution was then cooled and diluted with water, during which a brightly colored amorphous precipitate formed. The precipitate was filtered and dried. Purification of VII by column chromatography on aluminum oxide with elution by chloroform gave 0.45 g (47%) of a product with mp 93-94°.

Products VIII and IX were similarly obtained.

7-Chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-3-[2-(3,4,5-trimethylthiazolylidene)]-1,4-benzodiazepin-2-one (X). A solution of 0.62 g (0.002 mole) of 7-chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one and 0.508 g (0.002 mole) of 2-methylmercapto-3,4,5-trimethylthiazolium bromide in 10 ml of absolute ethanol was heated on a water bath, and several drops of triethylamine were added to the hot solution. The solution was then refluxed for 1 h, cooled, and diluted with water. The resulting precipitate was filtered, dried, and purified by column chromatography on Al_2O_3 with elution by CHCl $_3$ to give 0.2 g (25%) of X.

Compounds XI and XII were synthesized under the same conditions.

3-[2-(1,3,3-Trimethyl-2-indolinylidene)ethylidene]-7-chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (XIII). A solution of 0.31 g (0.001 mole) of 7-chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one and 0.20 g (0.001 mole) of 1,3,3-trimethyl-2-formylmethyleneindoline in 3 ml of acetic anhydride was heated to the boiling point. After 1 h, the reaction mixture was cooled, and the precipitate was filtered and dried. Chromatographic purification with Al_2O_3 as the adsorbent and elution by chloroform gave 0.30 g of reddish-violet crystalline substance with mp 78-80°.

Compounds XIV and XV were similarly synthesized.

7-Chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-3-[2-(1-methyl-5-phenyloxazolylidene)]-1,4-benzodi-azepin-2-one (XVI). Several drops of triethylamine were added to a hot solution of 0.31 g (0.001 mole) of 7-chloro-5-phenyl-1-acetyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one and 0.32 g (0.001 mole) of 2-methyl-mercapto-1-methyl-5-phenyloxazolium methosulfate in 3 ml of absolute ethanol. The solution acquired a lemon-yellow color in the process. The mixture was heated for 1 h, cooled, and several drops of water were added to it. The precipitate of unchanged starting 1,4-benzodiazepine was removed by filtration, and an amorphous reaction product was isolated from the mother liquor on standing; this was purified by column chromatography (on Al_2O_3 with elution by chloroform) to give 0.2 g (43%) of a product with mp 52-54°.

Products XVII and XVIII were obtained under similar conditions. Compounds XIX and XX were synthesized from 7-chloro- and 7-bromo-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-thione under the conditions described above for the synthesis of VII-IX.

LITERATURE CITED

- 1. K. Martin, H. Rapoport, H. W. Smith, and J. L. Wong, J. Org. Chem., 34, 1359 (1969).
- 2. J. D. White, W. E. Haefliger, and M. J. Dimsdale, Tetrahedron, 26, 233 (1970).
- 3. A. V. Bogatskii and S. A. Andronati, Zh. Obshch. Khim., 39, 443 (1969).
- 4. S. A. Andronati, A. V. Bogatskii, Yu. I. Vikhlyaev, Z. I. Zhilina, B. M. Kats, T. A. Klygul', V. N. Khudyakova, T. K. Chumachenko, and A. A. Énnan, Zh. Obshch. Khim., 40, 1881 (1970).
- 5. E.D. Sych, Ukr. Khim. Zh., 24, 79 (1958).
- 6. A. V. Bogatskii, Yu. I. Vikhlyaev, S. A. Andronati, T. A. Klygul', and Z. I. Zhilina, in: Physiologically Active Substances [in Russian], Vol. 4 (1971).